Привет ребята!

И снова это я - робот ВэМэЛ.

Нынешний турнир вы проведете со мной, соревнуясь в умении решать задачи с помощью программ. Это так интересно!

В этот раз с нами играют много новых команд и, значит, наш турнир расширяет границы. Я этому очень рад!

Напоминаю вам, что в любом соревновании главное **честная** победа, поэтому соблюдайте правила турнира, и тогда ваш успех принесет вам настоящее удовлетворение.

Желаю всем удачи в решении моих задач. Вперед, программисты!

Задача А. Арифметика кирпича.

Почему кирпич? Не знаю. Им можно запустить в окно или разбить его о голову десантника. А вообще-то, кирпич — это замечательное открытие строительной науки. Применение в строительстве обожжённого кирпича восходит к глубокой древности, некоторые постройки из кирпича в Египте датируются 3-2 тысячелетием до н. э. Меня удивил следующий факт: шли годы, совершенствовались производственные технологии, появлялись новые виды кирпича, однако его традиционные размеры практически не изменились!

Соотношение сторон кирпича (длина : ширина : высота) — 1:1/2:1/4. Оказывается, такие пропорциональные размеры позволяют обеспечивать необходимую прочность кладки. Привязанные к стандартам габариты кирпича позволяют без труда рассчитать их количество для возведения той или иной конструкции. Вот такая гениальная строительная арифметика.

В моей задаче Вам дано наименьшее измерение кирпича. Вам необходимо определить площадь его поверхности и объем.

Входные данные

Дано одно натуральное число a - наименьшее измерение гипотетического кирпича, это значение не превышает 10^6 .

Выходные данные

Выведите через пробел два числа: площадь поверхности и объем кирпича.

Nº	INPUT.TXT	OUTPUT.TXT
1	1	28 8
2	2	112 64

Задача В. Время суток на Венере.

На Земле нам известно условное деление суток на четыре части (утро, день, вечер, ночь). Деление действительно условно, потому что зависит от множества факторов, в основном географических. Здесь на Земле мы как-то привыкли к течению времени и легко ориентируемся по часам.

А как быть на других планетах? Например, на Юпитере и Сатурне сутки примерно равны 10 Земным часам, на Уране – 17-ти, на Нептуне – 16-ти, а вот на Венере примерно 2800 часам.

Труднее всего будет именно на Венере. Ваша задача создать прибор, который определяет время суток на Венере при условии, что Венерское утро начинается с 500:30 и длится до 1200:30, далее идет день до 1750:30, а потом вечер до 2700:30, остальное время - это ночь. Заметим, что 1200:30 - это уже день, так же как 1750:30 - вечер, а 2700:30 - ночь.

Напишите программу, которая по указанному времени, заданному в часах и минутах, определит время суток на Венере.

Входные данные

Известно время в формате ЧЧ:ММ. Часы определены в диапазоне от 0 до 2800, а минуты - от 0 до 59.

Выходные данные

Выведите англоязычный аналог названия времени суток согласно заданному во входных данных времени (morning - утро, day - день, evening - вечер и night - ночь).

Nº	INPUT.TXT	OUTPUT.TXT
1	500:35	morning
2	1400:00	day
3	1800:17	evening
4	02:30	night

Задача С. Мафия.

Играли в Мафию? Правда, азартная игра? Но не для меня. Мой ИИ легко просчитывает варианты, оценивает психологическое состояние игроков, и очень скоро я точно знаю, кто из играющих - мафия. Как-то я играл в одной компании из n человек, скучал и обратил внимание, что когда очередной мирный житель покидает круг, то на месте, на котором он сидел, образуется пустое место и круг разбивается на несколько непрерывных групп играющих, сидящих рядом друг с другом. Когда я это скучновато приметил, круг покинуло m игроков. А на какое наибольшее количество групп разбился круг?

Входные данные

Первая строка содержит два целых числа n и m ($2 \le n \le 1000$, $0 \le m \le n$) — количество игроков в начале игры и количество игроков, которые покинули круг к моменту, наблюдаемому мною.

Выходные данные

Выведите одно целое число — максимальное количество групп игроков в этот момент.

Nº	INPUT.TXT	OUTPUT.TXT
1	7 4	3
2	6 2	2
3	3 0	1
4	2 2	0

Задача D. Потерявшийся пакет.

Это не пакет из супермаркета. Это пакет протокола TCP/IP. Вчера должен был получить важное сообщение, но из-за потерявшегося пакета сборка не удалась. Точно известно, что отправленное сообщение было разбито TCP на n пакетов, которые были пронумерованы от 1 до n.

IP отправлял и получал пакеты, как обычно, в случайном порядке. Дошли все пакеты, кроме одного. Если найдем номер потерявшегося пакета, то сообщение будет собрано корректно. Помогите мне.

Входные данные

В первой строке входных данных записано целое число n (2 $\leq n \leq$ 100000) — количество пакетов TCP. Считайте, что пакеты пронумерованы от 1 до n.

Вторая строка содержит n-1 число $a_1, a_2, ..., a_n$ ($1 \le a_i \le n$) — номера пакетов, которые дошли. Все значения a_i различны.

Выходные данные

Выведите номер потерявшегося пакета.

Nº	INPUT.TXT	OUTPUT.TXT
1	10 3 8 10 1 7 9 6 5 2	4

Задача Е. Длинные числа.

Вы знаете такой целочисленный тип Qword? Это числа в диапазоне 0..18446744073709551615. Кто-нибудь готов назвать это число?

Будем считать число *длинным*, если его длина **строго больше** 20 символов. Все слишком длинные числа будем сокращать или перекодировать.

Суть сокращения в следующем: записывается первая и последняя числа, а между ними — количество цифр между первой и последней цифрами (в десятичной системе счисления и без ведущих нулей).

Таком образом, *длинное* число 184467440737095516150 запишется как «1190», а *длинное* число 1000000000000000000000000001 как «1301».

Вам предлагается автоматизировать процесс сокращения длинных чисел. При этом все истинно длинные числа должны быть сокращены, а числа, не являющиеся длинными, должны остаться без изменений.

Входные данные

В первой строке содержится целое число n (1 \leq n \leq 100). В каждой из последующих n строк содержится по одному числу. Все числа имеют длину от 1 до 100 символов.

Выходные данные

Выведите n строк. В i строке должен находиться результат сокращения или не сокращения i-го числа из входных данных.

Nº	INPUT.TXT	OUTPUT.TXT
1		1234 1193

Задача F. СТЕК памяти.

Мой СТЕК памяти бесконечен, все позиции пронумерованы, начиная с единицы. Для корректной записи в СТЕК указывается количество четных и нечетных ячеек памяти. Вам необходимо проверить, существует ли такой промежуток ячеек с I-й по I-ю ($I \le I \le I$), в который можно сделать запись.

Входные данные

В единственной строке вам заданы два целых числа $a, b \ (0 \le a, b \le 100)$ — количество чётных и нечётных ячеек соответственно.

Выходные данные

В единственной строке выходных данных выведите «YES», если промежуток, описанный входными данными, существует, и «NO» в противном случае.

Примеры

Nº	INPUT.TXT	OUTPUT.TXT
1	2 3	YES
2	3 1	NO

Примечание

В первом примере один из подходящих промежутков от 1 до 5. В этом интервале две четные ячейки — 2 и 4, и три нечетных: 1, 3 и 5.

Задача G. Урок ОБЖ.

На уроке ОБЖ Максим Николаевич выстраивает всех учеников в одну шеренгу. Естественно, в шеренге сначала идут мальчики, а потом девочки. При этом и мальчики в шеренге стоят по невозрастанию роста, и девочки тоже стоят по невозрастанию роста. Со стороны это выглядит так - следом за самым низким мальчиком стоит самая высокая девочка. Меня заинтересовал вопрос, какое максимальное различие в росте двух стоящих рядом учеников. Напишите программу, которая поможет ответить на этот вопрос.

Входные данные

Первая строка содержит целое число n — число учеников в классе ($2 \le n \le 50$). Следующие n строк содержат по два целых числа каждая: a_i и h_i — пол и рост в сантиметрах i-го ученика (a_i равно 0 или 1, $100 \le h_i \le 200$). Значение $a_i = 0$ означает, что i-й ученик — мальчик, а значение $a_i = 1$ означает, что i-й ученик — девочка.

Выходные данные

Выведите одно число — максимальное различие в росте стоящих рядом учеников после того, как они выстроятся в шеренгу на уроке ОБЖ.

Nº	INPUT.TXT	OUTPUT.TXT
	6	22
	0 120	
	1 130	
1	1 142	
	1 115	
	0 145	
	0 134	

Задача Н. Странный робот-пылесос.

Недавно купил на Алиэкспресс странного робота-пылесоса. Алгоритм его работы таков, что он разбивает комнату в виде сетки размера n на n ячеек (видимо по размеру своей щетки). Каждая ячейка изначально определяется либо чистой, либо грязной. Робот движется только по условным «столбцам» сетки. При этом он очень странно убирает: если пылесос проходит по чистому квадрату, то он становится грязным, а если проходит по грязному квадрату, он становится чистым. Робот всегда проезжает по всему «столбцу» от начала до его конца. При этом конечный алгоритм в том, чтобы проехать по некоторым «столбцам» комнаты так, чтобы максимизировать количество полностью чистых «строк». Выведите максимальное количество «строк», которые робот может сделать полностью чистыми.

Входные данные

В первой строке ввода находится единственное целое число $n \ (1 \le n \le 100)$.

В следующих *п* строках описано состояния комнаты. В *і*-й строке находится строка из *п* символов, обозначающих состояние *і*-й строки комнаты. В этой строке *j*-й символ равен '1', если *j*-й квадрат в *і*-й строке чистый, и '0', если он грязный.

Выходные данные

Выведите целое число, равное максимальному возможному количеству строк, которые будут полностью чистыми после выполнения алгоритма робота.

Примеры

Nº	INPUT.TXT	OUTPUT.TXT
1	4 0101 1000 1111 0101	2
2	3 111 111 111	3

Примечание

В первом примере робот может проехать 1-й и 3-й столбцы. От этого 1-ая и 4-ая строка станут полностью чистыми.

Во втором примере комната уже чистая, так что роботу ничего не надо делать.

Задача І. Бешеный калькулятор.

Мой знакомый, но пока несильно прошитый дроид, собрал свой первый калькулятор.

Но он выполняет только две операции:

- 1. Если введенное число a четное, то калькулятор выводит значение $\frac{3a}{2}$;
- 2. Если введенное число a больше единицы, то калькулятор выводит a-1.

При этом, если число четное и больше единицы, то калькулятор сам решает какую из двух операций к нему применить. Вот такой он бешенный.

Наша задача понять можно ли из числа x, получить число y с помощью операций бешеного калькулятора. Операции можно выполнять любое количество раз, в любом порядке. Кстати, бешеный калькулятор может вообще не выполнять операции, оставив x без изменений.

Входные данные

Первая строка содержит число *T* (*1*≤*T*≤*10*⁴) — количество наборов входных данных.

Следующие Т строк каждого набора входных данных содержит два целых числа x и y ($1 \le x, y \le 10^9$) — введенное число и число, которое надо получить.

Выходные данные

Для i-го набора входных данных выведите ответ на него — YES, если с помощью операций бешеного калькулятора можно получить число y из числа x, и NO в противном случае.

Nº	INPUT.TXT	OUTPUT.TXT
	7	YES
	23	YES
	1 1	NO
	3 6	YES
'	6 8	NO
	1 2	YES
	4 1	YES
	31235 6578234	

Задача Г. Акции.

Я начал играть на бирже. Решил вложить свои биткоины в акции «Газпрома». Теперь отслеживаю цены за n последовательных дней: $a_1, a_2, ..., a_n$, где a_i — цена 1 акции в день i.

Естественно, что я считаю цену акции в день *і ужасной*, если позже (то есть в день с большим номером) акция продавалась по меньшей цене. Например, если n=6 и a=[3,9,4,6,7,5] то количество дней с *ужасной* ценой равно 3— это дни 2 ($a_2=9$), 4 ($a_4=6$) и 5 ($a_5=7$).

Выведите количество дней с ужасной ценой.

Вам необходимо ответить на *t* независимых наборов входных данных.

Входные данные

В первой строке записано целое число t ($1 \le t \le 10000$) — количество наборов входных данных в тесте. Наборы входных данных надо обрабатывать независимо, один за другим.

Каждый набор входных данных состоит из двух строк. Первая строка содержит целое число n ($1 \le n \le 150000$) — количество дней. Вторая строка содержит n целых чисел $a_1, a_2, ..., a_n$ ($1 \le a_i \le 10^6$), где a_i — цена в i-й день.

Гарантируется, что сумма n по всем наборам входных данных в тесте не превосходит 150000.

Выходные данные

Выведите t целых чисел, j-е из них должно быть равно количеству дней с yжасной ценой в j-м наборе входных данных.

Nº	INPUT.TXT	OUTPUT.TXT
	5	3
	6	0
	394675	1
	1	8
	1000000	2
1	2	
	2 1	
	10	
	31 41 59 26 53 58 97 93 23 84	
	7	
	3212345	

Задача G. Парацаки.

Вы знаете, что такое парацак? Это удивительный и умный материал. Его еще не изобрели, но он существует. Он может самосклеиваться при определенных условиях. Разыграем эксперимент. Допустим, у вас есть *п* стержней из парацака, каждый из которых изначально имеет толщину 1.

Положим стержень на поверхность, а затем последовательно будем добавлять остальные. При добавлении очередного стержня, мы будем класть его правее всех уже имеющихся. Когда на поверхности находится больше одного стержня и крайние два справа стержня имеют одну и ту же толщину *v*, парацаки склеиваются и создают парацак толщины *v* + 1.

Определите толщину всех стержней из парацака, которые будут лежать на поверхности в конце эксперимента.

Входные данные

В первой строке входных данных записано единственное целое число n (1 $\leq n \leq$ 100 000) – количество стержней из парацака.

Выходные данные

Выведите единственную строку с k целыми числами, где k является итоговым количеством стержней после завершения эксперимента, описанного в условии задачи. i-е из этих чисел должно быть толщиной i-го слева стержня из парацака.

Примеры

Nº	INPUT.TXT	OUTPUT.TXT
1	1	1
2	2	2
3	3	2 1
4	8	4

Примечание

В первом примере у нас есть единственный стержень толщиной 1. Конечное состояние поверхности — 1.

Во втором примере мы выполняем следующие шаги:

Размещаем на поверхности один стержень.

Добавляем ещё один стержень. Теперь поверхность выглядит как 1 1.

Поскольку два последних стержня имеют одинаковую толщину, то они склеиваются до стержня толщины 1+1=2.

Таким образом, конечное состояние поверхности равно 2.

В третьем примере после добавления первых двух стержней поверхность выглядит как 2 (предыдущий пример). После добавления ещё одного стержня поверхность выглядит как 2 1. Дальнейшего склеивания не будет.

В последнем примере шаги выглядят следующим образом:

- 1. 1
- 2. 2
- 3. 21
- 4. 211
- 5. 22
- 6. 3
- 7. 31
- 8. 311
- 9. 32
- 10.321
- 11.3 2 1 1
- 12.3 2 2
- 13.33
- 14.4

Задача Ј. Правильная рассадка.

Ну, конечно, у нас должна быть задача про коронавирус. Именно он изменил нашу жизнь и внес множество новых, ранее неизвестных нам правил и понятий. Например, социальная дистанция или коронавирусная рассадка. Давайте и мы решим задачу некой правильной рассадки. Допустим, у нас есть квадратный концертный зал $n \times n$ мест. Пусть у нас есть 26 типов индивидуумов. Для обозначения этих типов будем использовать строчные буквы латинского алфавита от «а» до «z». Мы хотим рассадить индивидуумов в зал на места, в зависимости от расстояния от места до ближайшей диагонали. А именно, места на диагоналях квадрата мы будем заполнять индивидами «а», соседние с ними места — индивидами «b», соседние с ними, но еще не занятые — индивидами «с», и так далее. После рассадки индивидуумов «z» снова переходим к индивидуумам «а» и так далее. По заданному числу n выведите рассадку, которая получится. И тогда концерт состоится.

Входные данные

Входные данные содержат одно целое число $n \ (1 \le n \le 100)$.

Выходные данные

Выведите n строк по n символов — рассадку, которая получится.

Примеры

Nº	INPUT.TXT	OUTPUT.TXT
	5	abcba
		babab
1		cbabc
		babab
		abcba

Вот и все, ребята!

Надеюсь, у вас все получилось. До новых встреч!

Я напоминаю, что у нас впереди индивидуальный турнир и турнир для начинающих «Журавлик». Ждем к участию.

Ваш робот ВэМэЛ.